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ABSTRACT. Let (X,S,u) be a measure space. Let ® : R — R be a continuous
function. Topological properties of the space of all measurable real functions f such
that ® o f is Lebesgue-integrable are investigated in the space of measurable real
functions endowed with the topology of convergence in measure.

INTRODUCTION

Let (X, S, ) be a measure space. Denote by M the space of all measurable
real functions on X. As usual the symbol L,(u) stands for the set of all functions
f € M for which [, |f[Pdu < +o0 (p > 1).

It is shown in [4] that the Riemann-integrable functions on the interval [a,d]
(a,b € R) constitute a meager set in the space of all Lebesgue-integrable functions
on [a, b] furnished with the topology of mean convergence. Then a natural question
arises to establish the largeness of Lebesgue-integrable functions, or more generally
of L, spaces in the space M with an appropriate topology.

Making allowance for this we could pursue the analogy further by examining the
class A(®) of all mesurable real functions f such that ® o f is Lebesque-integrable,
where ® : R — R is an arbitrary but fixed continuous function.

In favour of this we need a proper topology on M. Let E(f,g;r) = {z €
X;|f(z) —g(z)| > r}, where f,g € M,r > 0. Define the pseudo-metric o on M as
follows ([1]):

o(f,g9) = inf{r > 0;u(E(f,g;7)) <1} (f,g € M).

Given f,,f € M (n € N) we say that f, converges in measure to f if, for each
>0 lim p(E(fu, fi7)) = 0.
n—oo
It is known that the g-convergence is equivalent to the convergence in measure,
further (M, p) is a complete pseudo-metric space ([1],p.80).
Define the following sets:
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Au(®) = {f € M;/X o fldu < a} (> 0),

A®) = {f € M; /X B o fldu < +oo},

where ® : R — R is an arbitrary but fixed continuous function.
The symbol x4 stands for the characteristic function of A C X.

MAIN RESULTS

First we point out to which Borel class A,(®) and A(®), respectively belong
(w > 0). We have

Theorem 1. The set A, (®P) is closed in (M, o) for all « > 0.

Proof. Let f € M, f,, € Aq(®) and o(fn, f) — 0 (n — o0). Then by a well-known
theorem of Riesz there exists a subsequence {f,, }32, of {fn}52, converging a.e.
on X to f. Consequently |®o f,,| — |®o f| a.e. on X, thus in view of the Fatou
Lemma

/ |® o fldu :/ (lim |[®o fp,|)du < liminf/ | o fr, ldu < a,
so feAy(®). O

Corollary 1. The set A(®) is an F,-subset of (M, o).
Proof. 1t follows from Theorem 1, since A(®) = U2, A4, (P). O

Remark 1. In the sequel we will use the fact that A(®) is meager in (M, o) if and
only if M\ Ao (P) is dense in M for all a > 0. Indeed, the sufficiency follows from
Theorem 1 (resp. Corollary 1). Conversely, (M, p) is a complete pseudo-metric
space and therefore a Baire space as well (cf.[3],p.19), i.e. every nonempty open
subset of M is nonmeager in (M, p). O

Now we are prepared to determine the category of A(®) in M.

Theorem 2. Suppose that
(1) for each € > 0 there exists E € S such that 0 < u(F) < e.
Let ® be unbounded. Then A(®) is meager in (M, p).

Proof. Let f € Ay(®) (where a > 0), € > 0, further 0 < u(E) < € for some E € S.
Choose tg € R such that

1
B(to)] > m(a—/m@oﬂdm.

Then for g = f - xx\g +to - Xg € M we have

/ 1 o gl = / B o fldu + |9 (to) [u(E) > o, thus g € M\ Aq(®).
X X\E

On the other hand E(f, g;e) C E, so o(f,g) < € (see Remark 1). O
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Theorem 3. Let (X, S, 1) be a non-o-finite measure space. Suppose that either ®
is bounded or (1) does not hold.

Then A(®) is meager in (M, o) if and only if |®|71(0, +o0) = {t € R; |®(¢)| > 0}
1s dense in R.

Proof. Suppose that |®|71(0, +00) is dense in R. Let a > 0 and f € A,(®). Then
f can be considered as a uniform limit of a sequence of elementary measurable
functions ([2], p.86). Hence we can find an elementary measurable function g =
S LanXE, (with X =[J>7 | E,) in every e-neighbourhood of f in (M, p) (¢ > 0)
such that ®(a,) # 0 for all n € N.

Since (X, S, ) is not o-finite we can find m € N for which u(E,,) = +oo. It
follows that

[ wogldnz [ 1@ 0gldn = 1B(an)ln(En) =+,
hence g € M\ A,(®). Further see Remark 1.

Conversely, suppose that there exist § > 0,¢ € R such that ®(¢') = 0, for every
t'e I = (t—0,t+0). Define f(x) = ¢, which is evidently in A(®). Choose an
arbitrary ¢ € M from the d-neighbourhood of f. Then we can find 0 < rg < ¢
such that E = E(f,g;7) is of measure less than 6. Then t — ¢ < g(z) < t + 79,
consequently g(x) € I, thus

@ [ 1eogdi= [ |@ogldn+ [ [@ogida= [ @ogldu=a
X X\E E E

If (1) does not hold then a = 0 for a suitably small §, further if ® is bounded
then a < Ku(F) < Krg < 400 for some K > 0. It is now clear from (2) that under
our assumptions [, |® o gldu < 400, so g € A(®). Accordingly A(®) contains a
nonempty open ball. [

Before we state the appropriate theorem for o-finite spaces define the function

¢(c,e) = max |D(t)|, where c € R,e > 0.
t€[c—e,cte]
Theorem 4. Let (X, S, 1) be a o-finite measure space and {X,,}52 1 be a measur-

able decomposition of X with u(X,) < +oo. Suppose that either ® is bounded or
(1) does not hold. Then A(®) is meager in (M, o) if and only if

(3) Ve >0 Ve, € R (n€N) Z o(cp,€) = +00.

Proof. First suppose that (3) holds. Choose arbitrary a > 0,e > 0 and f € A, (P).

Examine f on the finite measure space (X,,5]|x,,#¢lx,) (n € N). There ex-
ists a sequence of simple measurable functions which converges a.e. to f on X,,
further the convergence a.e. implies convergence in measure on finite measure
spaces ([1],p.78). It means that for every n € N there exists a simple measurable

function g, = Zz U cn zXXm (where k(n) € N,¢,; € R, X,,; € S|x,) such that
N(Xn N E(fa gn; 2)) S 2n+1
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Define the function g =" | g,, € M. We have

WE(f:5)) = D n(Xu N E(f.90:3)) <

wlm

9 9
<Y s=5 wolfg) S
n—

For every n € Nlet ¢, be that of the numbers ¢, 1, ..., ¢, k(n) for which ¢(c, 4, 5)
is the least (1 < i < k(n)). Choose dy; € [cn,i — §,Cn,i + 5] such that |®(dy ;)| =
¢(Cn,i»5) and put h = S lzk(n) dniXx,, € M. Then o(h,g) < 5, thereby

o(f,h) < o(f,9) + olg,h) <
On the other hand from (3) we have

oo k(n)

/|(I)Oh\d/~b Z/ |(I)Oh|d:u_zz¢cnu_ ’ nz)Z
n=1 i=1
oo k(n) - oo - k(n)
>3 dlen, ) 1 Xny) = > dlen, ) (> (X)) =
n=1 i=1 n=1 =1
=" 6(en 5) - u(Xy) = +oc.

n=1

It means that h € M\ A,(®P) (see Remark 1).

Conversely, if contrary to (3) >.-— | ¢(cn,e0) < a for some a, e > 0 and ¢, €
R (n € N), then f =3 "7 ¢y Xx, € Aa(P). Choose g € M such that o(f,g) <é
(0 < d < &g). One can find an 0 < rg < 0, for which the measure of E = E(f,g;70)
is less than ¢.

We have

—~

/I@Og|du=(Z/X E|¢Og|du)+/|®og|du§

Z/ ¢(cn, 0)dp) + /!<I>og\du< Z (cns€0) - (X)) +
X, =t
—}—/|<I>og|d,u§a+/]<bog|d,u.
E E

Reasoning analoguous to that of at the end of the proof of Theorem 3 works. [

Remark 2. Observe that Theorems 2-4 determine the category of A(®) in (M, o)
for every continuous ® and measure space (X, S, i), respectively. However some of
these theorems overlap, e.g. in one direction Theorem 3 holds for o-finite measure
spaces as well (the necessity of the density of |®|~1(0, +00) for A(®) being meager),
but in reverse it is false.

Indeed, let (X,S,u) be an arbitrary o-finite measure space. Let {X,}52; be
a measurable decomposition of X such that u(X,) < +oo for all n € N. Define
the sequence rg = 1,71, = %min{rn_l, m} if u(X,) >0 and r, = %T‘n—1 if
w(X,) =0 (n €N). Let
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1, fort <0
O(t) =< rp, fort =n (n € N)

linear, elsewhere.

Then @ is a nonincreasing, positive, bounded continuous function.

On the other hand setting ¢, = 248 (n € N) we get ¢(cy,3) = ry, thus
S Blen, 2) - u(X,) < 302, 5+ = 2. Consequently by Theorem 4 A(®) is
nonmeager in (M, p). O

Corollary 2. Let p > 1. Then L,(n) is nonmeager in (M, o) if and only if p is
finite and bounded away from zero.

Proof. Suppose that p is not bounded away from zero (i.e. (1) holds). Since the
function ®(t) = [t|? (p > 0) is continuous and unbounded Theorem 2 yields the
desired result at once.

Assume now the converse of (1) and consider a non-o-finite measure space
(X, S, ). Then L,(p) is meager in (M, o) by Theorem 3.

Suppose further that (X, S, u) is o-finite. Let {X,,}52; be a measurable decom-
position of X with p(X,) < 400 (n € N). It is easy to check that ¢c,e) > P for
alle >0and ce R

Consequently we get for every ¢, € R (n € N) that

o0

Z Cnv ZM SPZSP'M(X):+OO7

n=1

provided p(X) = 4o00. Then in virtue of Theorem 4 L, (u) is meager in M.
Finally if (X, S, ) is a finite measure space then putting ¢,, = 0 for alln € N and
e = 1 we can see that (3) is not fulfilled, thus Theorem 4 completes the proof. [
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