ON SUBSPACES OF MEASURABLE REAL FUNCTIONS

László Zsilinszky

College of Education, Department of Mathematics Farská 19, 949 74 Nitra, Slovakia

ABSTRACT. Let (X, S, μ) be a measure space. Let $\Phi : \mathbb{R} \to \mathbb{R}$ be a continuous function. Topological properties of the space of all measurable real functions f such that $\Phi \circ f$ is Lebesgue-integrable are investigated in the space of measurable real functions endowed with the topology of convergence in measure.

INTRODUCTION

Let (X, S, μ) be a measure space. Denote by \mathcal{M} the space of all measurable real functions on X. As usual the symbol $L_p(\mu)$ stands for the set of all functions $f \in \mathcal{M}$ for which $\int_X |f|^p d\mu < +\infty \ (p \ge 1)$.

It is shown in [4] that the Riemann-integrable functions on the interval [a, b] $(a, b \in \mathbb{R})$ constitute a meager set in the space of all Lebesgue-integrable functions on [a, b] furnished with the topology of mean convergence. Then a natural question arises to establish the largeness of Lebesgue-integrable functions, or more generally of L_p spaces in the space \mathcal{M} with an appropriate topology.

Making allowance for this we could pursue the analogy further by examining the class $A(\Phi)$ of all mesurable real functions f such that $\Phi \circ f$ is Lebesque-integrable, where $\Phi : \mathbb{R} \to \mathbb{R}$ is an arbitrary but fixed continuous function.

In favour of this we need a proper topology on \mathcal{M} . Let $E(f, g; r) = \{x \in X; |f(x) - g(x)| > r\}$, where $f, g \in \mathcal{M}, r > 0$. Define the pseudo-metric ρ on \mathcal{M} as follows ([1]):

$$\varrho(f,g) = \inf\{r > 0; \mu(E(f,g;r)) \le r\} \quad (f,g \in \mathcal{M}).$$

Given $f_n, f \in \mathcal{M}$ $(n \in \mathbb{N})$ we say that f_n converges in measure to f if, for each r > 0 lim $\mu(E(f_n, f; r)) = 0$.

It is known that the ρ -convergence is equivalent to the convergence in measure, further (\mathcal{M}, ρ) is a complete pseudo-metric space ([1],p.80).

Define the following sets:

¹⁹⁹¹ Mathematics Subject Classification. 28A20, 54E52.

Key words and phrases. Convergence in measure, Baire category, L_p spaces.

$$A_{\alpha}(\Phi) = \{ f \in \mathcal{M}; \int_{X} |\Phi \circ f| d\mu \le \alpha \} \ (\alpha \ge 0),$$
$$A(\Phi) = \{ f \in \mathcal{M}; \int_{X} |\Phi \circ f| d\mu < +\infty \},$$

where $\Phi : \mathbb{R} \to \mathbb{R}$ is an arbitrary but fixed continuous function.

The symbol χ_A stands for the characteristic function of $A \subset X$.

MAIN RESULTS

First we point out to which Borel class $A_{\alpha}(\Phi)$ and $A(\Phi)$, respectively belong $(\alpha \ge 0)$. We have

Theorem 1. The set $A_{\alpha}(\Phi)$ is closed in (\mathcal{M}, ϱ) for all $\alpha \geq 0$.

Proof. Let $f \in \mathcal{M}, f_n \in A_{\alpha}(\Phi)$ and $\varrho(f_n, f) \to 0$ $(n \to \infty)$. Then by a well-known theorem of Riesz there exists a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$ converging a.e. on X to f. Consequently $|\Phi \circ f_{n_k}| \to |\Phi \circ f|$ a.e. on X, thus in view of the Fatou Lemma

$$\int_{X} |\Phi \circ f| d\mu = \int_{X} (\lim_{k \to \infty} |\Phi \circ f_{n_{k}}|) d\mu \le \liminf_{k \to \infty} \int_{X} |\Phi \circ f_{n_{k}}| d\mu \le \alpha,$$

 $\in A_{\alpha}(\Phi).$ \Box

Corollary 1. The set $A(\Phi)$ is an F_{σ} -subset of (\mathcal{M}, ϱ) .

Proof. It follows from Theorem 1, since $A(\Phi) = \bigcup_{n=1}^{\infty} A_n(\Phi)$. \Box

Remark 1. In the sequel we will use the fact that $A(\Phi)$ is meager in (\mathcal{M}, ϱ) if and only if $\mathcal{M} \setminus A_{\alpha}(\Phi)$ is dense in \mathcal{M} for all $\alpha > 0$. Indeed, the sufficiency follows from Theorem 1 (resp. Corollary 1). Conversely, (\mathcal{M}, ϱ) is a complete pseudo-metric space and therefore a Baire space as well (cf.[3],p.19), i.e. every nonempty open subset of \mathcal{M} is nonmeager in (\mathcal{M}, ϱ) . \Box

Now we are prepared to determine the category of $A(\Phi)$ in \mathcal{M} .

Theorem 2. Suppose that

(1) for each $\varepsilon > 0$ there exists $E \in S$ such that $0 < \mu(E) < \varepsilon$.

Let Φ be unbounded. Then $A(\Phi)$ is meager in (\mathcal{M}, ϱ) .

Proof. Let $f \in A_{\alpha}(\Phi)$ (where $\alpha > 0$), $\varepsilon > 0$, further $0 < \mu(E) < \varepsilon$ for some $E \in S$. Choose $t_0 \in \mathbb{R}$ such that

$$|\Phi(t_0)| > \frac{1}{\mu(E)} (\alpha - \int_{X \setminus E} |\Phi \circ f| d\mu).$$

Then for $g = f \cdot \chi_{X \setminus E} + t_0 \cdot \chi_E \in \mathcal{M}$ we have

$$\int_{X} |\Phi \circ g| d\mu = \int_{X \setminus E} |\Phi \circ f| d\mu + |\Phi(t_0)| \mu(E) > \alpha, \text{ thus } g \in \mathcal{M} \setminus A_{\alpha}(\Phi).$$

On the other hand $E(f,g;\varepsilon) \subset E$, so $\varrho(f,g) < \varepsilon$ (see Remark 1). \Box

so f

Theorem 3. Let (X, S, μ) be a non- σ -finite measure space. Suppose that either Φ is bounded or (1) does not hold.

Then $A(\Phi)$ is meager in (\mathcal{M}, ϱ) if and only if $|\Phi|^{-1}(0, +\infty) = \{t \in \mathbb{R}; |\Phi(t)| > 0\}$ is dense in \mathbb{R} .

Proof. Suppose that $|\Phi|^{-1}(0, +\infty)$ is dense in \mathbb{R} . Let $\alpha > 0$ and $f \in A_{\alpha}(\Phi)$. Then f can be considered as a uniform limit of a sequence of elementary measurable functions ([2], p.86). Hence we can find an elementary measurable function $g = \sum_{n=1}^{\infty} a_n \chi_{E_n}$ (with $X = \bigcup_{n=1}^{\infty} E_n$) in every ε -neighbourhood of f in (\mathcal{M}, ϱ) ($\varepsilon > 0$) such that $\Phi(a_n) \neq 0$ for all $n \in \mathbb{N}$.

Since (X, S, μ) is not σ -finite we can find $m \in \mathbb{N}$ for which $\mu(E_m) = +\infty$. It follows that

$$\int_X |\Phi \circ g| d\mu \ge \int_{E_m} |\Phi \circ g| d\mu = |\Phi(a_m)| \mu(E_m) = +\infty,$$

hence $g \in \mathcal{M} \setminus A_{\alpha}(\Phi)$. Further see Remark 1.

Conversely, suppose that there exist $\delta > 0, t \in \mathbb{R}$ such that $\Phi(t') \equiv 0$, for every $t' \in I = (t - \delta, t + \delta)$. Define $f(x) \equiv t$, which is evidently in $A(\Phi)$. Choose an arbitrary $g \in \mathcal{M}$ from the δ -neighbourhood of f. Then we can find $0 < r_0 < \delta$ such that $E = E(f, g; r_0)$ is of measure less than δ . Then $t - r_0 \leq g(x) \leq t + r_0$, consequently $g(x) \in I$, thus

(2)
$$\int_X |\Phi \circ g| d\mu = \int_{X \setminus E} |\Phi \circ g| d\mu + \int_E |\Phi \circ g| d\mu = \int_E |\Phi \circ g| d\mu = a.$$

If (1) does not hold then a = 0 for a suitably small δ , further if Φ is bounded then $a \leq K\mu(E) \leq Kr_0 < +\infty$ for some K > 0. It is now clear from (2) that under our assumptions $\int_X |\Phi \circ g| d\mu < +\infty$, so $g \in A(\Phi)$. Accordingly $A(\Phi)$ contains a nonempty open ball. \Box

Before we state the appropriate theorem for σ -finite spaces define the function

$$\phi(c,\varepsilon) = \max_{t \in [c-\varepsilon, c+\varepsilon]} |\Phi(t)|, \text{ where } c \in \mathbb{R}, \varepsilon > 0.$$

Theorem 4. Let (X, S, μ) be a σ -finite measure space and $\{X_n\}_{n=1}^{\infty}$ be a measurable decomposition of X with $\mu(X_n) < +\infty$. Suppose that either Φ is bounded or (1) does not hold. Then $A(\Phi)$ is meager in (\mathcal{M}, ϱ) if and only if

(3)
$$\forall \varepsilon > 0 \ \forall c_n \in \mathbb{R} \ (n \in \mathbb{N}) : \ \sum_{n=1}^{\infty} \mu(X_n) \cdot \phi(c_n, \varepsilon) = +\infty.$$

Proof. First suppose that (3) holds. Choose arbitrary $\alpha \geq 0, \varepsilon > 0$ and $f \in A_{\alpha}(\Phi)$.

Examine f on the finite measure space $(X_n, S|_{X_n}, \mu|_{X_n})$ $(n \in \mathbb{N})$. There exists a sequence of simple measurable functions which converges a.e. to f on X_n , further the convergence a.e. implies convergence in measure on finite measure spaces ([1],p.78). It means that for every $n \in \mathbb{N}$ there exists a simple measurable function $g_n = \sum_{i=1}^{k(n)} c_{n,i}\chi_{X_{n,i}}$ (where $k(n) \in \mathbb{N}, c_{n,i} \in \mathbb{R}, X_{n,i} \in S|_{X_n}$) such that $\mu(X_n \cap E(f,g_n;\frac{\varepsilon}{2})) \leq \frac{\varepsilon}{2^{n+1}}$.

Define the function $g = \sum_{n=1}^{\infty} g_n \in \mathcal{M}$. We have

$$\mu(E(f,g;\frac{\varepsilon}{2})) = \sum_{n=1}^{\infty} \mu(X_n \cap E(f,g_n;\frac{\varepsilon}{2})) \le \\ \le \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2}, \text{ so } \varrho(f,g) \le \frac{\varepsilon}{2}.$$

For every $n \in \mathbb{N}$ let c_n be that of the numbers $c_{n,1}, \ldots, c_{n,k(n)}$ for which $\phi(c_{n,i}, \frac{\varepsilon}{2})$ is the least $(1 \leq i \leq k(n))$. Choose $d_{n,i} \in [c_{n,i} - \frac{\varepsilon}{2}, c_{n,i} + \frac{\varepsilon}{2}]$ such that $|\Phi(d_{n,i})| = \phi(c_{n,i}, \frac{\varepsilon}{2})$ and put $h = \sum_{n=1}^{\infty} \sum_{i=1}^{k(n)} d_{n,i}\chi_{X_{n,i}} \in \mathcal{M}$. Then $\varrho(h,g) \leq \frac{\varepsilon}{2}$, thereby $\varrho(f,h) \leq \varrho(f,g) + \varrho(g,h) \leq \varepsilon$.

On the other hand from (3) we have

$$\int_{X} |\Phi \circ h| d\mu = \sum_{n=1}^{\infty} \int_{X_n} |\Phi \circ h| d\mu = \sum_{n=1}^{\infty} \sum_{i=1}^{k(n)} \phi(c_{n,i}, \frac{\varepsilon}{2}) \cdot \mu(X_{n,i}) \ge$$
$$\ge \sum_{n=1}^{\infty} \sum_{i=1}^{k(n)} \phi(c_n, \frac{\varepsilon}{2}) \cdot \mu(X_{n,i}) = \sum_{n=1}^{\infty} \phi(c_n, \frac{\varepsilon}{2}) \cdot (\sum_{i=1}^{k(n)} \mu(X_{n,i})) =$$
$$= \sum_{n=1}^{\infty} \phi(c_n, \frac{\varepsilon}{2}) \cdot \mu(X_n) = +\infty.$$

It means that $h \in \mathcal{M} \setminus A_{\alpha}(\Phi)$ (see Remark 1).

Conversely, if contrary to (3) $\sum_{n=1}^{\infty} \phi(c_n, \varepsilon_0) \leq \alpha$ for some $\alpha, \varepsilon_0 > 0$ and $c_n \in \mathbb{R}$ $(n \in \mathbb{N})$, then $f = \sum_{n=1}^{\infty} c_n \cdot \chi_{X_n} \in A_{\alpha}(\Phi)$. Choose $g \in \mathcal{M}$ such that $\varrho(f, g) < \delta$ $(0 < \delta < \varepsilon_0)$. One can find an $0 < r_0 < \delta$, for which the measure of $E = E(f, g; r_0)$ is less than δ .

We have

$$\begin{split} \int_{X} |\Phi \circ g| d\mu &= (\sum_{n=1}^{\infty} \int_{X_n \setminus E} |\Phi \circ g| d\mu) + \int_{E} |\Phi \circ g| d\mu \leq \\ &\leq (\sum_{n=1}^{\infty} \int_{X_n \setminus E} \phi(c_n, \delta) d\mu) + \int_{E} |\Phi \circ g| d\mu \leq (\sum_{n=1}^{\infty} \phi(c_n, \varepsilon_0) \cdot \mu(X_n)) + \\ &+ \int_{E} |\Phi \circ g| d\mu \leq \alpha + \int_{E} |\Phi \circ g| d\mu. \end{split}$$

Reasoning analoguous to that of at the end of the proof of Theorem 3 works. \Box

Remark 2. Observe that Theorems 2-4 determine the category of $A(\Phi)$ in (\mathcal{M}, ϱ) for every continuous Φ and measure space (X, S, μ) , respectively. However some of these theorems overlap, e.g. in one direction Theorem 3 holds for σ -finite measure spaces as well (the necessity of the density of $|\Phi|^{-1}(0, +\infty)$ for $A(\Phi)$ being meager), but in reverse it is false.

Indeed, let (X, S, μ) be an arbitrary σ -finite measure space. Let $\{X_n\}_{n=1}^{\infty}$ be a measurable decomposition of X such that $\mu(X_n) < +\infty$ for all $n \in \mathbb{N}$. Define the sequence $r_0 = 1, r_n = \frac{1}{2} \min\{r_{n-1}, \frac{1}{2^n \cdot \mu(X_n)}\}$ if $\mu(X_n) > 0$ and $r_n = \frac{1}{2}r_{n-1}$ if $\mu(X_n) = 0$ $(n \in \mathbb{N})$. Let

$$\Phi(t) = \begin{cases} 1, & \text{for } t \leq 0\\ r_n, & \text{for } t = n \ (n \in \mathbb{N})\\ \text{linear, elsewhere.} \end{cases}$$

Then Φ is a nonincreasing, positive, bounded continuous function.

On the other hand setting $c_n = \frac{2n+1}{2}$ $(n \in \mathbb{N})$ we get $\phi(c_n, \frac{1}{2}) = r_n$, thus $\sum_{n=1}^{\infty} \phi(c_n, \frac{1}{2}) \cdot \mu(X_n) \leq \sum_{n=1}^{\infty} \frac{1}{2^n} = 2$. Consequently by Theorem 4 $A(\Phi)$ is nonmeager in (\mathcal{M}, ϱ) . \Box

Corollary 2. Let $p \ge 1$. Then $L_p(\mu)$ is nonmeasure in (\mathcal{M}, ϱ) if and only if μ is finite and bounded away from zero.

Proof. Suppose that μ is not bounded away from zero (i.e. (1) holds). Since the function $\Phi(t) = |t|^p$ (p > 0) is continuous and unbounded Theorem 2 yields the desired result at once.

Assume now the converse of (1) and consider a non- σ -finite measure space (X, S, μ) . Then $L_p(\mu)$ is meager in (\mathcal{M}, ϱ) by Theorem 3.

Suppose further that (X, S, μ) is σ -finite. Let $\{X_n\}_{n=1}^{\infty}$ be a measurable decomposition of X with $\mu(X_n) < +\infty$ $(n \in \mathbb{N})$. It is easy to check that $\phi(c, \varepsilon) \geq \varepsilon^p$ for all $\varepsilon > 0$ and $c \in \mathbb{R}$

Consequently we get for every $c_n \in \mathbb{R}$ $(n \in \mathbb{N})$ that

$$\sum_{n=1}^{\infty} \mu(X_n) \cdot \phi(c_n, \varepsilon) \ge \sum_{n=1}^{\infty} \mu(X_n) \cdot \varepsilon^p = \varepsilon^p \cdot \mu(X) = +\infty,$$

provided $\mu(X) = +\infty$. Then in virtue of Theorem 4 $L_p(\mu)$ is meager in \mathcal{M} .

Finally if (X, S, μ) is a finite measure space then putting $c_n = 0$ for all $n \in \mathbb{N}$ and $\varepsilon = 1$ we can see that (3) is not fulfilled, thus Theorem 4 completes the proof.

References

- [1] H.Federer, Geometric Measure Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1969.
- [2] P.R.Halmos, Measure Theory, D.van Nostrand Company, Inc., Toronto-New York-London, 1950.
- [3] R.C.Haworth and R.A.McCoy, *Baire spaces*, Dissertationes Math. 141, Warszawa, 1977.
- [4] J.C.Oxtoby, *Measure and Category*, Springer-Verlag, New York-Heidelberg-Berlin, 1971.